Registration now open for MIIFED 2013 in Monaco

Whether you are an engineer full of ideas, an industry player looking for global business opportunities, or a fusion researcher wanting to keep up-to-date on the latest ITER achievements and developments, the 2013 Monaco ITER International Fusion Energy Days (MIIFED) offer an excellent opportunity for exchanging views and experiences, while forming valuable international business relationships.

MIIFED will be held on 2-4 December 2013 in the Principality of Monaco, under the high patronage of H.S.H. Prince Albert II.
This international conference will present the latest progress of the ITER project and also the major scientific and technological developments in the field of fusion and energy worldwide. The aim is to encourage synergies between energy-related research and technology developments.

Together with the exhibition, the different conference sessions will facilitate learning, networking and partnering with other research actors.

The following high level speakers have already accepted to contribute to MIIFED 2013:
His Serene Highness Prince Albert II
Yukiya Amano, Director-General, IAEA
Bernard Bigot, Chairman, CEA
Jean-Jacques Dordain, Director-General, European Space Agency
Charles Elachi, Director, Jet Propulsion Laboratory, USA
Masako Inoue, Director, Mitsubishi Heavy Industries, Japan
Madhukar Kotwal, Member of the Board, Larson & Toubro, India
Sir Chris Llewellyn Smith, former Director-General, CERN
Umberto Minopoli, President, Ansaldo Nucleare, Italy
Osamu Motojima, Director-General, ITER Organization
John Parmentola, Senior Vice-President, General Atomics, USA
Hideyuki Takatsu, Chair of the ITER Council
Maria Van der Hoeven, Executive Director, International Energy Agency

Click here to register online.

A visit to Mitsubishi’s Futami plant

Of the 19 toroidal field coils that will be produced for ITER (18 for Tokamak assembly, plus one spare), 9 will be procured by Japan.

The Japanese Domestic Agency has contracted with four major Japanese and Korean companies—Mitsubishi Heavy Industry, Japan (main contractor, coil case manufacturer #1); Mitsubishi Electric Corporation, Japan (winding pack manufacturer #1); Toshiba, Japan (winding pack manufacturer #2); and finally Hyundai Heavy Industry, Korea (coil case manufacturer #2 ).

Two weeks ago, participants to the Unique ITER Team (UIT) activities that followed the Twelfth ITER Council in Japan (19-20 June) had the opportunity to visit Mitsubishi Heavy Industry’s Futami facility near Kobe, where the first toroidal field coil will be wound and integrated.

Installation of the winding equipment at the Futami facility should be completed in September, allowing for dummy winding to proceed until the end of the year. Double pancake dummy winding should begin in early 2014.

The visit of the winding workshop and a discussion on the schedule presented by Mitsubishi Heavy Industry left the ITER guests with „a strong feeling of confidence,” says Head of IO-DA Coordination Songtao Wu.

The fellowship of the Plasma Ring



Thirty years ago, on 25 June 1983, the Joint European Torus (JET) came to life with a flash of plasma. „There was an air of hushed expectancy as the countdown for the first plasma attempt progressed,” remembers Phil Morgan, then an optical spectroscopy specialist who had joined the project the year before. „A suppressed gasp was heard as on one of the TV screens the machine appeared to tilt when the magnetic field was switched on—then loud laughter as people realized that the field was distorting the image recorded by the TV camera.”

This anecdote and many others were shared on 24-25 June as JET and ITER personnel, connected by video link, assembled to commemorate the event that, 30 years ago, opened a new era in the history of fusion.

In the ITER Council Room, where some 25 former members of JET’s staff had gathered around the head of ITER’s CODAC, Heating & Diagnostics Directorate, Paul Thomas, and at Culham, where participants were hosted under a tent, participants remembered with equal emotion the intensity of the peak plasma current that was achieved on that day and the taste of the minestrone soup prepared by the wife of Franco Bombi, then head of JET’s Control and Data Acquisition System.

To Paul, and many others who now are part of the ITER team, JET provided „invaluable experience.” Thirty years after its first plasma and two decades after its first burst of fusion power on 9 November 1991, „JET is the key device to resolve many of the challenges that we are facing,” (Mike Walsh, head of Diagnostics); „Its input is critical for our commissioning plan,” (Ken Blackler, head of Assembly & Operations); „It continues to deliver important results that provide direct input, even today, in our design decisions,” (Günther Janeschitz, Engineering Officer).

The posters decorating the conference room at Culham for this two-day celebration read: „30 years of JET — Paving the way to ITER’s take-off.” ITER Director of Plasma Operation David Campbell, who made the trip to JET, stressed this important mission in his speech, broadcast live: „JET provides substantial training for those who will operate ITER.”

More coverage on the EFDA website.

Council welcomes progress in construction and manufacturing


The ITER Council met for the twelfth time in its history on June 19-20 in Tokyo, Japan.

The meeting brought together senior representatives from the seven ITER Members—China, the European Union, India, Japan, Korea, Russia and the United States—under the chairmanship of Hideyuki Takatsu (Japan).

The Council took note of the increasing pace of construction activities on the ITER site and progress in the manufacturing of components and supporting systems, highlighting the fact that major contracts have been placed recently and many leading industries are now involved in ITER construction.

During the 12th ITER Council, significant progress was reported in the manufacturing of ITER magnets: over 420 tons of niobium-tin strand (Nb3Sn) for the toroidal field conductors (90 percent of project needs) and 133 tons of niobium-titanium (NbTi) strand for the poloidal field conductors (51 percent of project needs) have been produced to date.

The Council reaffirmed the importance of sustained efforts regarding schedule implementation, while recognizing the challenges due to the first-of-a-kind nature of ITER. In this context, the governing body of ITER welcomed improved collaboration between the ITER Organization and the Domestic Agencies as part of the Unique ITER team.

Click here to view the photo gallery of the Twelfth ITER Council.
 
Read the Press Releases in
English and in French.

"Cooperation will make this project successful"

Following closely on the heels of the Science and Technology Advisory Committee, STAC, which convened at ITER Headquarters from 14-16 May, the ITER Council’s management advisory body, the Management Advisory Committee, MAC, met from 21 to 23 May to examine strategic management issues such as schedule, cost and the implementation of plans for installation and assembly, testing and commissioning.

Close to fifty experts from the seven ITER Members were present in the Council Chamber of the Headquarters Building to address the charges from the last ITER Council (IC-11, November 2012) as well as the additional charges that resulted from the special meeting of the MAC in March.

As at the last meeting, the schedule remained the focus of discussion. MAC recognized the efforts of the ITER Organization and the Domestic Agencies that have resulted in improvement, particularly on the critical systems and components, and made further suggestions.

In the all-hands meeting that followed the closing session of the MAC, the ITER Director-General Osamu Motojima told the hundreds of staff members assembled, „At the conclusion of three days of discussion, I can tell you that the MAC was a productive one for us. We can draw up an action plan today, based on the recommendations from the MAC experts. As a Unique ITER Team we have made intense efforts to improve schedule performance and to implement the related corrective measures. We can and will keep this positive schedule trend.”

In break-out sessions over the course of the three days, MAC Chair Ranjay Sharan, from India, had time to comment: „Issue-based solutions are being found, one after another. The most important thing is that collaboration has increased and the Unique ITER Team (UIT) is working. We may be only in the initial stages … the UIT has yet to give concrete results … but we understand one another’s problems better. I want to insist on this: cooperation is the tool that will make this project successful.”

The report and recommendations formulated by the 15th meeting of the Management Advisory Council will be discussed at the next meeting of the ITER Council, which will take place in Tokyo, Japan from 19-20 June 2013.

STAC Chair reflects on latest meeting


The 14th meeting of the Science and Technology Advisory Committee (STAC) took place recently at the ITER Headquarters, from 14-16 May. We had the honour to be the first committee that met in the impressive Council Room after it was inaugurated by the ITER Council last November.

The STAC advises the ITER Council on two areas: the monitoring of ongoing project activity and the assessment of new proposals which imply a change in the ITER Baseline. The work at every meeting is based on the „STAC charges” adopted by the ITER Council. We assess the input from the ITER Organization that replies to recommendations made by the STAC and answers questions implied in the STAC charges.

The preparation of each STAC meeting involves an important work load on key ITER Organization staff and, as Chair of the STAC, I am aware that we must be careful with the amount of work that our requirements put on ITER Organization resources. I must also recognize the high overall quality of the reports and presentations delivered to our committee.
 
One of the first agenda points since I have participated in the STAC is the review of the project schedule from a technical point of view. Essentially, we analyze the technical causes of delays, including aspects which are midway between the technical and the managerial world such as configuration control, quality control, process control, etc.

As is happened in previous meetings, STAC 14 continued to express its concern about delays in the project. A number of systems are „critical or supercritical,” which means that they drive the First Plasma schedule, amongst them buildings, vacuum vessel, the poloidal field coils … and even the toroidal field coils could come into this category if delays are not stemmed. In addition, the „microschedule” reflected in the milestone achievement index and similar management parameters also indicates delays. However my personal perception, and to some extent that of many STAC members, is that the processes are improving and that the project schedule will soon consolidate. The STAC also acknowledged the organizational efforts and the implementation of recovery plans in order to mitigate the delays.

As I explained during the meeting with the staff in the afternoon of 16 May, my personal view on the delays is that they are not dangerous per se for the project but they undermine our credibility in front of stakeholders and society and this is the actual danger. In order to rebuild credibility our best tool is to keep working hard, as everyone involved is already doing. The ITER project is not only extremely complicated technically, it is also a nuclear project, which adds complexity. It was conceived with a complicated collaborative structure and, unfortunately, an underestimated allocation of resources. The fact that it is effectively progressing and that many components are actually being constructed should encourage all of us.

In addition to the technical analysis of the schedule STAC also looked at deferrals, i.e., procurements which are proposed to be delayed in order to free resources for other items that are needed in earlier phases of the project. We were worried about the deferred implementation of some systems, in particular diagnostics, and we have requested the ITER Organization to make every possible effort to implement those systems in time in order to avoid delays to the deuterium-tritium campaign derived from a slow implementation of the research plan.

During STAC-14 we noted that the organization and the progress of neutronics analysis has improved, for which we commended the ITER Organization. We have requested further detail on the results obtained for the next meeting of the STAC, in particular in relation to the heating of toroidal field coils and shutdown dose rates near the ports.

The news presented to the STAC on the central solenoid conductor was very good: in the last tests of a new cable developed by the Japanese Domestic Agency it showed very good stability—in fact, the degradation noted in earlier samples was essentially non-existing. Thus, we are now confident that the construction of the central solenoid can go ahead while keeping ITER’s performance as originally planned.

This STAC had the responsibility to make a clear recommendation on an important technical decision: whether or not to include in-vessel coils for ELM control in the Baseline. After we evaluated the specific problems that a lack of ELM control could cause, in particular when operating with a tungsten divertor, our unanimous recommendation was to include the coils in the ITER Baseline. STAC concluded that the potential benefits of the use of the coils in achieving ITER’s mission outweigh the risks, which were found to be very modest taking into account the solid design of the coils and the fact that they will be thoroughly tested during the non-nuclear phase.

STAC expects to make a recommendation next October for another key technical decision: the material for the first ITER divertor (tungsten or carbon).

At STAC-14 we analyzed the input from the ITER Organization regarding progress in divertor technology and tungsten divertor physics and the preliminary report prepared by the ITPA topical groups, which provided an excellent in-depth review of what is known today concerning tokamak operation with high Z* walls. The results from JET and other devices give a positive view of the operation with tungsten divertor in ITER but impose some scenario restrictions that must be further considered for ITER. Experiments to be carried out at JET in the near future, aiming at local melting of some tungsten elements of the divertor, will provide important input for a final recommendation by the STAC on its next meeting.

A final element in the last STAC meeting was the monitoring of progress in a number of areas: remote handling, quality control, ion cyclotron, and negative neutral beam heating. On this last item STAC looks forward with interest to the recent start of activities in the ELISE facility, which will provide important input to the physics and engineering design of the neutral beam injection sources for ITER.

In summary, STAC 14 corroborated important steps in the progress in the ITER project, which we expect to see reinforced next October thanks to the continued effort of all ITER Organization staff.

* A high Z element, like tungsten, is an element with a high
atomic number—its nucleus includes a large number of protons.

Periodic review for Test Blanket Module Program


The ninth meeting of the ITER Council Test Blanket Module (TBM) Program Committee took place on 25-26 April.

The TBM Program Committee meets twice a year to review the implementation of TBM program—including the Members' Test Blanket Systems and the ITER Organization’s TBM integration activities—and to report to the ITER Council. The Program Committee reviews the status of the TBM-related activities within the ITER Organization, TBM design and R&D progress within the ITER Members, and the status of corresponding milestones.

The main objectives of this ninth meeting were to define the short-term steps that need to be performed in order to keep to the present Baseline schedule for the TBM Program as well as possible corrective actions which should be pursued in case of delays. Participants noted that the TBM Program schedule is closely linked to that of several ITER components (e.g., nuclear buildings); therefore, the coherence of the schedules needs to be continuously monitored.

Among the key milestones for the TBM Program are the signing of the six specific TBM Arrangements (TBMAs) that correspond to the formal implementation of each Test Blanket System in ITER. Following the endorsement of the generic TBM Arrangement by the ITER Council at its last meeting in June 2012, each ITER Member with responsibility for a TBM System (denoted a „TBM Leader”) has started the preparation of the draft of the corresponding specific TBMA and evaluated a realistic date for its signature by the Director-General and the designated ITER Member representative. These dates, ranging from January to December 2014, were reviewed and noted by the Committee.

The first component delivery associated with the TBM Program is expected as early as 2016: the Test Blanket System connection pipes will connect the components located in the TBM equatorial port cell to the components located in other rooms of the Tokamak Complex via the corresponding shaft and/or the corridor. These connection pipes belong to the six Test Blanket Systems and should therefore be procured by the relevant ITER Members. The TBM-PC agreed, in principle, to transfer responsibility for this procurement to the ITER Organization since it is advantageous to implement a common and unique procurement. The corresponding scope of the compensation, in terms of finance and human resources, was also agreed.

The TBM Program Committee also took note of the status of the activities of the Test Blanket Program Working Group (TBP-WG) on Radwaste Management. Its Chair, PK Wattal, reported on the work performed by the ITER Members to evaluate the expected volume and characteristics of the radwaste and on the corresponding classification performed by Agence ITER France, the official entity which the Host State has charged with the future management of ITER radwaste. Issues associated with the transporting of irradiated TBMs to the owner countries were also addressed.

The outcomes of this ninth meeting of the Test Blanket Module (TBM) Program Committee will reported to the ITER Council meeting in June.

Rich Hawryluk reflects on his years at ITER

What is it like to be at the centre of ITER, the huge international fusion experiment that is under construction in France? „It’s both exciting and challenging,” said physicist Rich Hawryluk, who recently returned to the Princeton Plasma Physics Laboratory (PPPL) in the US after a two-year stint as deputy director-general for the Administration Department of ITER. „It’s exciting in the scope and scale of this effort, and challenging in bringing such a large project to completion.”

Hawryluk had many diverse responsibilities at ITER. He oversaw functions ranging from human resources to finance and budgeting to procurement and information technology. „A project this large is almost a continuous cycle of oversight and reviews,” said Hawryluk. „You’re essentially going from one major review to another every few months, and this kept us extremely busy.”

Hawryluk arrived at ITER in April 2011, a year after construction of the ITER complex began on a 180-hectare site in 2010. Contracts now are being prepared and awarded to assemble the six-storey-tall fusion facility, or Tokamak Building, that will be at the heart of the complex.

Hawryluk is no stranger to exhaustive oversight duties. He served as head of PPPL’s Tokamak Fusion Test Reactor experiment from 1991 to 1997 and as deputy director of PPPL from 1997 to 2008. He also was a member of the US delegation to the ITER Management Advisory Committee, which reports to the ITER Council. „But there’s a big difference between being an outsider on the advisory committee and dealing with day-to-day issues,” he said. „Getting immersed in and resolving the many issues that we had talked about was a major change.”

Read more on the PPPL website.

Discussing experiments and aligning priorities

The 10th Integrated Operation Scenarios (IOS) International Tokamak Physics Activity (ITPA) meeting was held in the ITER Council Chamber from 15-18 April 2013. There were 30 external participants from the ITER Members and a number of representatives from the ITER Organization. The external participants include representatives from the main magnetic fusion devices and modellers from the ITER Members.

The purpose of the meeting was to discuss the experiments and modelling being carried out around the world in support of the ITER design and plasma operation as well as to align the priorities for future R&D with the latest ITER priorities. The IOS Topical Group (TG) is one of seven topical groups in the ITPA whose main role is to integrate plasma operation scenarios for burning plasma experiments, particularly for ITER, including inductive, hybrid, and steady-state scenarios. The IOS-TG also recommends physics guidelines and methodologies for the operation and design of burning plasma experiments. The ITPA topical groups all meet every six months in one of the countries of the ITER Members. This was the first time the IOS-TG met at ITER, allowing the members and experts of the IOS-TG to see first-hand the progress in ITER construction. 

Experimental and modelling results were presented from Alcator C-Mod, ASDEX-Upgrade, DIII-D, JET, JT-60U, and KSTAR of ITER-relevant plasma operational scenarios. Experimental results concentrated on inductive and hybrid scenarios; modelling of steady-state scenarios was also presented. Modelling of burning plasma and energetic particle physics were presented as well as plasma rotation in ITER and their impact on operational scenarios. The predicted plasma rotation profiles in hybrid scenarios were strongly peaked with rotation up to nearly 200 km/s, corresponding to about 4 kHz rotation in ITER in the centre. The effects of the Edge Localized Mode (ELM) coil fields on fast ion losses comparing vacuum fields and the plasma response were also shown, indicating that when the plasma response is included, the fast ion losses are acceptable even at high performance with the maximum ELM coil current.

The IOS-TG also concentrates on plasma control including experiments and modelling of profile control as well as development of the preliminary design of the ITER plasma control system (PCS). A review of the PCS conceptual design was presented as well as an action plan for how the experimental and modelling programs within the ITER Members can contribute to developing the PCS preliminary design for First Plasma and early hydrogen and helium plasma operation. Modelling of control of the entry into a burning plasma regime was also presented. A proposal was made to integrate experiments and modelling of plasma control schemes for ITER in existing experiments so that these control schemes can be developed before ITER operation to reduce run time on ITER for control scheme development. A request was made for the ITPA to provide control priorities for the ITER actuators starting with a few phases of plasma operation. 

As part of the ITPA response to the question of starting ITER with an all-tungsten divertor, the IOS-TG discussed the effect of a tungsten divertor on operational scenarios. Reports from DIII-D, ASDEX Upgrade, and C-Mod compared operation with carbon walls and metal walls. Although there were some differences, it was generally believed that ITER would be able to learn how to operate with beryllium walls and an all tungsten divertor.

Modelling of ITER and JET current ramps were also presented indicating the differences between operation with carbon walls and with the ITER-like wall on JET. Since the peak in radiation for tungsten occurs around a temperature of 1 keV, the radiation from tungsten will be peaked near the edge in ITER. There is still a question about whether or not the tungsten transport into the core can be controlled to a sufficiently small value.
Modelling of steady-state fusion plasma scenarios was also presented to understand how the present heating and current drive systems should perform as well as what upgrades might be required to meet the long-pulse goals of the ITER program. The modelling includes simulation of sawtooth control, kinetic integrated modelling, and parameter scaling from existing experiments to ITER steady-state regimes. An update was also given on the latest proposed changes to the steering of the electron cyclotron heating and current drive system that was followed by extensive discussion.

In summary, the meeting provided valuable information on recent experiments and modelling of ITER plasma operation scenarios. Actions for the ITPA members and experts to help define the preliminary design of the ITER plasma control system were agreed upon. Continued experiments and modelling to demonstrate ITER operational scenarios for the inductive, hybrid, and steady-state scenarios were presented. A special report on the impact of an all-tungsten divertor on ITER operational scenarios was also discussed at length. 

Commr. Busquin was key in Europe’s bid for ITER


ITER owes a lot to a few individuals who, at decisive moments in the project’s history, made decisions that changed the course of events.

Philippe Busquin is one of them. In 2001, as European Commissioner for Energy (1999-2004), he played a key role in pressing the Commission to commit itself to actually realizing ITER.

„I took the responsibility to launch ITER,” he recalls. „At the time, the European effort to develop fusion was quite diluted amongst several associations. ITER was still a paper project and I felt it was high time to get on to the experimental phase.”

2001 was a defining year for ITER. A new design for the Fusion Energy Advanced Reactor („ITER-FEAT”) had been approved by the ITER Council; Canada had proposed to host the installation; local governments in Provence were mobilizing to promote the Cadarache site… For Busquin, the time was ripe to take action.

„As a nuclear physicist, I could measure what was at stake with fusion; as a politician, I knew Europe had to be daring. And I was optimistic…”

Two years later, in 2003, Europe had two sites to offer to ITER—one in Vandellòs, Spain; one in Cadarache, France. Busquin considered at the time that this „double offer” was proof of Europe’s determination to host the project.

As he stood above the Tokamak Seismic Pit, one decade later, the former European Commissioner felt profound satisfaction and a sense of pride.

„I was standing close to where we are now, with French Research Minister Claudie Haigneré and all the people who worked so hard to make ITER happen here—of course the landscape was quite different but I can still recognize the place.”

Philippe Busquin, now retired from public affairs (but still active in promoting collaboration between industry and the academic world) took some time from a vacation with his wife and son to meet ITER Director-General Osamu Motojima and visit the ITER site last week.

As for the future of ITER, he is as optimistic in 2013 as he was in 2001. „With ITER we are working at the limits of about every available technology,” he says. „We cannot begin to imagine the benefits of such a venture. But the project is also a first in terms of international governance and management. In this respect also, what we are learning will have huge consequences for the future.”

DivSOL wagon rolls EAST



With the EAST tokamak in the middle of an extended maintenance period—during which the ASIPP team in Hefei, China will take the audacious step of installing an ITER-like, full tungsten divertor in the upper part of the vacuum vessel by the end of this year—what better place to hold the latest in the series of regular meetings of the International Tokamak Physics Activity (ITPA) Topical Group on Divertor and Scrape-Off Layer physics. Known in ITPA circles as the DivSOL TG, this group focuses on issues of importance to ITER in the area of heat and particle exhaust from the tokamak plasma and the unavoidable plasma-surface interactions which occur at the plasma-materials boundary. 

Plasma and materials physicists work together within DivSOL to address a host of questions, from movement of material by the plasma and tritium trapping in surfaces, to turbulent transport of heat in the plasma boundary and plasma-facing component lifetime under intense heat fluxes. In common with all ITPA groups, DivSOL is reactive to urgent ITER physics R&D issues and works to find answers to specific requests.

One such example is the flurry of activity stimulated by the ITER Organization proposal in autumn 2011 to eliminate one of the two divertors planned for the first years of ITER operation, up to achievement of burning plasmas. The idea is to go the whole way with a single unit in which tungsten (chemical symbol W) would be the only material intercepting the majority of the tokamak heat exhaust. A single divertor would be a major cost saving to the project, but it is a calculated risk: W is a harder material to work with from the plasma point of view than the carbon fibre composite in originally planned first divertor.

Finding out just how much of a risk, and making sure that a workable design with qualified technology can be ready in time for procurement which must begin next year, was the task set by the ITER Council to the ITER Organization, with a reporting deadline near the end of 2013. All the ITPA groups are lending a helping hand by trying to assess the physics risks of „beginning full-W.” DivSOL has a major role to play given that most, but by no means all, of the issues concern the plasma-materials interface.

Not surprisingly, living with tungsten was a major theme in the 18th DivSOL meeting, hosted by ASIPP from 19-22 March. It was also a record breaking meeting that reunited over 90 representatives from the ITER Members, including about 50 Chinese participants representing universities and technology institutes from all over China. Such high attendance reflects the importance of plasma-materials interaction not just to ITER, but to the long-term future of fusion as a viable energy source. The meeting was also a good example of the less visible, but essential, role which ITPA fulfills in addition to supporting ITER as a vehicle through which newcomers can take part in lively discussions and presentations, in a workshop atmosphere, with experts from across the ITER Members.

The success of any workshop or conference depends to a large part on organization. Our Chinese hosts led by Houyang Guo of ASIPP (and ITPA DivSOL co-chair), provided a seamless environment for the first DivSOL meeting ever to be held at the Institute. The next DivSol TG will be held in Japan in January 2014.

ITPA DivSOL wagon rolls EAST



With the EAST tokamak in the middle of an extended maintenance period—during which the ASIPP team in Hefei, China will take the audacious step of installing an ITER-like, full tungsten divertor in the upper part of the vacuum vessel by the end of this year—what better place to hold the latest in the series of regular meetings of the International Tokamak Physics Activity (ITPA) Topical Group on Divertor and Scrape-Off Layer physics. Known in ITPA circles as the DivSOL TG, this group focuses on issues of importance to ITER in the area of heat and particle exhaust from the tokamak plasma and the unavoidable plasma-surface interactions which occur at the plasma-materials boundary. 

Plasma and materials physicists work together within DivSOL to address a host of questions, from movement of material by the plasma and tritium trapping in surfaces, to turbulent transport of heat in the plasma boundary and plasma-facing component lifetime under intense heat fluxes. In common with all ITPA groups, DivSOL is reactive to urgent ITER physics R&D issues and works to find answers to specific requests.

One such example is the flurry of activity stimulated by the ITER Organization proposal in autumn 2011 to eliminate one of the two divertors planned for the first years of ITER operation, up to achievement of burning plasmas. The idea is to go the whole way with a single unit in which tungsten (chemical symbol W) would be the only material intercepting the majority of the tokamak heat exhaust. A single divertor would be a major cost saving to the project, but it is a calculated risk: W is a harder material to work with from the plasma point of view than the carbon fibre composite in originally planned first divertor.

Finding out just how much of a risk, and making sure that a workable design with qualified technology can be ready in time for procurement which must begin next year, was the task set by the ITER Council to the ITER Organization, with a reporting deadline near the end of 2013. All the ITPA groups are lending a helping hand by trying to assess the physics risks of „beginning full-W.” DivSOL has a major role to play given that most, but by no means all, of the issues concern the plasma-materials interface.

Not surprisingly, living with tungsten was a major theme in the 18th DivSOL meeting, hosted by ASIPP from 19-22 March. It was also a record breaking meeting that reunited over 90 representatives from the ITER Members, including about 50 Chinese participants representing universities and technology institutes from all over China. Such high attendance reflects the importance of plasma-materials interaction not just to ITER, but to the long-term future of fusion as a viable energy source. The meeting was also a good example of the less visible, but essential, role which ITPA fulfills in addition to supporting ITER as a vehicle through which newcomers can take part in lively discussions and presentations, in a workshop atmosphere, with experts from across the ITER Members.

The success of any workshop or conference depends to a large part on organization. Our Chinese hosts led by Houyang Guo of ASIPP (and ITPA DivSOL co-chair), provided a seamless environment for the first DivSOL meeting ever to be held at the Institute. The next DivSol TG will be held in Japan in January 2014.

Management Advisory Committee meets in Barcelona


For the second time in its history, the ITER Council Management Advisory Committee (MAC) convened for an extraordinary session in order to assess the status of the ITER project schedule and the implementation of corrective actions.

The meeting took place from 18-19 March at the headquarters of the European Domestic Agency in Barcelona in the attendance of high-level representatives of the ITER Organization and seven ITER Members.

Since the last special MAC meeting held in August 2012, the ITER Organization has worked closely with Domestic Agencies to complete the integration of Detailed Work Schedules (DWS)—detailed schedules that exist for every component or system. The IO and DAs completed the integration of the remaining DWS, namely Main Vacuum Vessel, IC Antenna, PF Coils and TF Structure, which will allow for monitoring of the schedule.

MAC requested that the Unique ITER Team continue to make significant efforts to take action focusing on super-critical milestones and to take all possible measures to keep to the Baseline schedule. The ITER Organization and Domestic Agencies are committed to doing their best to implement this request.

A 3,500 m² extension for Headquarters



Staff and contractors hadn’t yet taken possession of their offices in the brand-new ITER Headquarters building last autumn and already planning was underway for the second round of works. Between spring 2013 and spring 2014, if all goes according to schedule, the Headquarters building will be extended to the west by 35 metres, providing space for an additional 350 employees.

The original architectural design of the building called for office space for 460, with two options for extension (for an additional 250 desk spaces per option). As early as June 2008, the ITER Organization reported to the Second ITER Council that at least one of the two options would be required: projections for the Construction and Operation Phases of ITER placed manpower requirements at between 1,000 and 1,100 desk spaces.

„Despite the rationalization of the building’s internal layout, which increased its capacity to 500, and another 300 existing desks in the former Headquarters building, the insufficiency of available space for the long-term needs of the project was evident,” explains head of Building & Site Infrastructure Tim Watson.
 
As construction began on the 20,500 square-metre Headquarters, BSI conducted a study of the potential options for additional desk space. One consideration prevailed: in the interest of efficiency, any new office space should be as close as possible to the Headquarters building. Could pre-fabricated buildings be a solution? Or would a permanent extension be more cost efficient in the long run?
 
„It turned out that all indicators pointed to a permanent extension as the most rational and cost-efficient solution,” says Tim. „Pre-fabricated buildings have higher operational and maintenance costs, and in the longer term they have to be replaced. By adding onto the Headquarters building we will be able to capitalize on existing infrastructure such as lifts and some of the heating and cooling system capacity. We’ll also save time by not having to submit a new building permit and by working with the architect and building designers that just completed the ITER Headquarters.”

The proposition of a permanent extension to the Headquarters Building was submitted to the ITER Council in June 2012 and endorsed.

The new extension will be architecturally compatible with the main building—five-stories, the same height and width, and the signature vertical slats on the public facade. Walking along an interior corridor, it won’t be evident where the „old” building ends and the new begins. The building will be equipped with the usual services, meeting rooms and offices for 2-4, and also a large proportion of „open space” offices hosting up to 24 people. One unique feature will occupy an inner room on the ground floor: a 3D virtual reality room that will be used for design and engineering activities.

Since January 2012, BSI has worked closely with the architect and building designers to establish the technical specifications for the extension. Preliminary specifications were distributed through the ITER Domestic Agencies to inform potentially interested construction firms of the upcoming tender to be issued by the ITER Organization. This phase has now ended and the tender offer is on the point of being launched.

For ITER staff, extension works should become a daily reality beginning this summer. Following the award of the extension construction contract, BSI estimates that 12 months will be necessary for building works—an „aggressive but achievable” schedule.

Thanks to Erwan Duval, Facility Management Officer, for his contribution to this article.

ITER is well underway


The Eleventh ITER Council convened last week at the ITER site for a two-day meeting that brought together the high-level representatives of the seven ITER Members.

As approximately 100 people took their places in the solemn setting of the new Council Room, Director-General Osamu Motojima welcomed the participants, adding, „I would like to take this opportunity to thank the Members, in particular Europe, the Host Party, and Agence ITER France for providing the project with the ITER Organization Headquarters building where staff is nearly fully installed.” 

The Council noted the strong measures that have been taken by the ITER Organization and the Domestic Agencies to realize strategic schedule milestones and to develop new corrective measures for critical systems such as buildings, the vacuum vessel, the cryostat, and the superconducting magnets. Delegates urged further corrective actions to improve schedule execution and to seek additional savings.

Delegates welcomed the integrated project management approach proposed by the ITER Organization to enhance collaboration between the ITER Organization and the Domestic Agencies, an approach, according to Director-General Motojima, to „cooperate even more closely for the implementation of ITER.”

The ITER Council also celebrated the recent major licensing milestone for ITER, the strong pace of construction activities at the ITER site, and the manufacturing activities well underway in all ITER Members.

The next ITER Council meeting is scheduled to take place in Japan in June 2013.

Click here to view the photo gallery of the Eleventh ITER Council
 
Read the Press Releases in English and in French.

"ITER is well underway"


The Eleventh ITER Council convened last week at the ITER site for a two-day meeting that brought together the high-level representatives of the seven ITER Members.

As approximately 100 people took their places in the solemn setting of the new Council Room, Director-General Osamu Motojima welcomed the participants, adding, „I would like to take this opportunity to thank the Members, in particular Europe, the Host Party, and Agence ITER France for providing the project with the ITER Organization Headquarters building where staff is nearly fully installed.” 

The Council noted the strong measures that have been taken by the ITER Organization and the Domestic Agencies to realize strategic schedule milestones and to develop new corrective measures for critical systems such as buildings, the vacuum vessel, the cryostat, and the superconducting magnets. Delegates urged further corrective actions to improve schedule execution and to seek additional savings.

Delegates welcomed the integrated project management approach proposed by the ITER Organization to enhance collaboration between the ITER Organization and the Domestic Agencies, an approach, according to Director-General Motojima, to „cooperate even more closely for the implementation of ITER.”

The ITER Council also celebrated the recent major licensing milestone for ITER, the strong pace of construction activities at the ITER site, and the manufacturing activities well underway in all ITER Members.

The next ITER Council meeting is scheduled to take place in Japan in June 2013.

Click here to view the photo gallery of the Eleventh ITER Council
 
Read the Press Releases in English and in French.

The ITER circles of support

In terms of the number of individuals devoting their time and energy to the realization of ITER, there are of course the employees and contractors of the ITER Organization, currently estimated at 900 people. But this nucleus is surrounded by concentric circles of support without which the project couldn’t succeed: the ITER Members; the ITER Council and its advisory bodies; the Domestic Agency teams and their manufacturing partners; and finally fusion associations all over the world.

A representative of this last category visited ITER last week as a guest lecturer for the Inside ITER seminar series. Dr. Rudolf Neu from the European Fusion Development Agreement (EFDA) is known as „Mr. Tungsten” in the fusion world. Closely involved with the ASDEX wall upgrade and the JET ITER-like wall, Mr. Neu is currently in charge of EFDA’s ITER Physics Department where he coordinates the research program in preparation for ITER’s experimentation phase.

„EFDA activities are strongly aligned with ITER needs,” said Dr. Neu. „Our fusion associations pool resources and share results … results which are then extrapolated for ITER.” Thirty fusion associations are part of the EFDA family, with responsibility for 14 fusion experiments that are currently operating or under construction. 

Among the exciting projects going on in Europe is JET’s ITER-like wall experiment: „This is an experiment that uses the ITER material mix for the first time in a tokamak. We have already had manifold unexpected results from this experiment that we hope will give us new physics insights. This is truly an important experiment for ITER.”

Dr. Neu also updated the audience on the Fusion Roadmap which draws out the step-by-step aims of Europe’s fusion program, with the final goal of fusion electricity by 2050. „The European Fusion Roadmap sees ITER as the key facility for the development of fusion energy.”

The benefit is mutual, according to lTER Director-General Osamu Motojima: „The European Union’s high-level domestic program in fusion is very important for the ITER project. Having such support is very encouraging for us all.”

Left column, right column and beyond

Whether you’re doing your home finances or running the Finance and Budget Division of an international organization such as ITER, you basically act on the same principles: what comes in goes into the column on the left; what goes out goes into the column on the right, and the total must be balanced.

Now of course, there are differences. Finances at ITER are a rather complex affair; the Organization is accountable to authorities such as the ITER Council. Its finances are audited twice a year by the Financial Audit Board and are published through its annual Financial Statements.

Like most, if not all, public organizations or private companies, the ITER Organization manages its finances within strict rules. One set of rules is internal and is called the "Project Resource Management Regulations (PRMR)"; the other is a set of international standards, specific to public entities — the "International Public Sector Accounting Standards (IPSAS)".

Upon its inception, the ITER Organization voluntarily adhered to the 32 standards of IPSAS. However, some very specific aspects of the project’s organization, such as the nature of its contributions and assets or their valuations over time, were not fully anticipated by the experts who drafted the IPSAS.

In order to become more familiar with the IPSAS updates and their application to the ITER Organization’s specific accounting issues, the Accounting, Treasury and Systems Section of the ITER Finance and Budget Division organized a training session early this week (10-11 September). Professor Frans Van Schaik, a partner at the auditing firm Deloitte Netherlands, and a former Member of the IPSAS Board (2006-2011), and Juliette Nahon, a Public Sector manager at Deloitte France, came to Cadarache to further develop the internal IPSAS knowledge, and to share with the ITER Accounting staff their worldwide experience.

„The aim,” explains Senior Accountant Lionel Rigaux, „was to review the principles, applicability and disclosures required by the IPSAS and to optimize the way we implement them in order to strengthen our ability to produce high-quality Financial Statements leading to the Auditor’s certification”.