OF INTEREST: Supercomputer lends insight into plasma dynamics

​Studying the intricacies and mysteries of the sun is physicist Wendell Horton life’s work. A widely known authority on plasma physics, his study of the high temperature gases on the sun, or plasma, consistently leads him around the world to work on a diverse range of projects that have great impact.

Fusion energy is one such key scientific issue that Horton is investigating and one that has intrigued researchers for decades.

"Fusion energy involves the same thermonuclear reactions that take place on the sun," Horton said. "Fusing two isotopes of hydrogen to create helium releases a tremendous amount of energy—10 times greater than that of nuclear fission."
Through the Institute for Fusion Studies at The University of Texas at Austin, Horton collaborates with researchers at ITER, a fusion lab in France and the National Institute for Fusion Science in Japan to address these challenges. At ITER, Horton is working with researchers to build the world’s largest tokamak—the device that is leading the way to produce fusion energy in the laboratory.
Perfecting the design of the tokamak is essential to producing , and since it is not fully developed, Horton performs supercomputer simulations on the Stampede supercomputer at the Texas Advanced Computing Center (TACC) to model plasma flow and turbulence inside the device.
"Simulations give us information about plasma in three dimensions and in time, so that we are able to see details beyond what we would get with analytic theory and probes and high-tech diagnostic measurements," Horton said.
The simulations also give researchers a more holistic picture of what is needed to improve the tokamak design. Comparing simulations with fusion experiments in nuclear labs around the world helps Horton and other researchers move even closer to this breakthrough energy source.

Read the full article on PhysOrg