OF INTEREST: Puffing hydrogen for self-protection

Researchers of the FOM Institute DIFFER have discovered that the wall material of a fusion reactor can shield itself from high energy plasma bursts. The wall material tungsten seems to expel a cloud of cooling hydrogen particles that serves as a protective layer. The research team publishes their results on 24 March 2014 in the journal Applied Physics Letters.

[…] The heart of a fusion reactor like ITER contains an extremely hot plasma, from which short, intense energy bursts rain down on the reactor wall. In ITER, the tungsten wall will face powerful discharges of several gigawatts per square meter, several times per second.  However, researchers at FOM Institute DIFFER discovered that under some conditions less than half of that incoming energy actually hits the surface.

The physicists used their linear plasma experiment Pilot-PSI to show that the tungsten surface shields itself from the blast by expelling a cloud of cooling hydrogen particles. This is the first time that fusion researchers see the energy pulses and the wall react to each other at this level of detail.

Caption: Hydrogen plasma in DIFFER’s linear plasma generator Pilot-PSI. Credit: Fundamental Research on Matter (FOM)

Read more on DIFFER website